Data Central uses cookies to make your browsing experience better. By using Data Central you agree to its use of cookies. Learn more I agree

Documentation

Find information, examples, FAQs and extensive descriptions of the data, curated by the survey teams.

Docs hc

Help Center

Browse FAQs, guides and tutorials on common use cases.
Feb. 10, 2021 by B. Miszalski
Feb. 17, 2021, 12:40 a.m. B. Miszalski

SSA: GALAH DR3

GALAH DR3 spectra of a relatively metal-rich star (150703002602199, [Fe/H]=1.00) and a relatively metal-poor star (150606005401060, [Fe/H]=-2.90).

This example queries the SSA service directly to plot GALAH DR3 spectra from each arm of the Hermes spectrograph in a single plot.

from specutils import Spectrum1D
import astropy.coordinates as coord
import matplotlib.pyplot as plt
import matplotlib as mpl
from matplotlib.backends.backend_pdf import PdfPages
from matplotlib import gridspec
import pandas as pd
import matplotlib.ticker as plticker
from astropy.stats import sigma_clip
from astropy.time import Time
import requests
import re
from io import BytesIO
from astropy import units as u
from pyvo.dal.ssa  import search, SSAService

##set the figure size to be wide in the horizontal direction
fsize=[20,13]
mpl.rcParams['axes.linewidth'] = 0.7
FSIZE=18
LWIDTH=0.5

#URL of the SSA service 
url = "https://datacentral.org.au/vo/ssa/query"
service = SSAService(url)
indiv_results = []
targets = ['150606005401060','150703002602199'] 
#since SSA does not support more than one value per each parameter
#to query multiple targets we perform separate queries
#and append the results to indiv_results in the form of pandas dataframes
#Once done, we can concatenate the results into a single dataframe 
#that makes processing the results a lot easier
#Note that we exclude the pos parameter here, since we are using the targetname
for t in targets:
    custom = {}
    custom['TARGETNAME'] = t
    #only retrieve the normalised spectra
    custom['DPSUBTYPE'] = 'normalised'
    custom['COLLECTION'] = 'galah_dr3'
    results = service.search(**custom)
    indiv_results.append(results.votable.get_first_table().to_table(use_names_over_ids=True).to_pandas())

#dataframe containing all our results
df = pd.concat(indiv_results,ignore_index=True)

i = 0

plotidx = 0
PLOT=1
ofname = 'galah.pdf'
print ("Writing results to: ",ofname)
pdf = PdfPages(ofname)

uniq_targ = df['target_name'].unique()
#spectra that we want to plot, corresponding to each arm of the HERMES spectrograph
filters = ['B','V','R','I']

for targ in uniq_targ:
    #setup a new plot for each object
    f = plt.figure(figsize=fsize)
    print (targ)
    
    running = 0 
    #get the number of spectra to retrieve for the target of interest
    tdf = df[(df['target_name'] == targ)]
    NSPEC = tdf[tdf['band_name'].isin(filters)].shape[0]
    for filt in filters:
        subset = df[(df['target_name'] == targ) & (df['band_name'] == filt)].sort_values(by=['band_name']).reset_index()
        #We use gridspec to lay out the expected number of elements 
        gs = gridspec.GridSpec(NSPEC,1)
        gs.update(wspace=0.1)
        #In some cases one of the different arm's spectra are missing (e.g. the I-band)
        if(subset.shape[0] > 0):
            #need to add RESPONSEFORMAT=fits here to get fits format returned
            url= subset.loc[0,'access_url'] + "&RESPONSEFORMAT=fits"
            print ("Downloading ",url)
            #read the spectrum in using specutils
            spec = Spectrum1D.read(BytesIO(requests.get(url).content),format='wcs1d-fits')
            #read the exposure time from the dataframe that contains all the obscore parameters
            exptime = subset.loc[0,'t_exptime']
             
            #setup the subplot containing the spectrum
            ax = plt.subplot(gs[running,0])
            ax.tick_params(axis='both', which='major', labelsize=FSIZE)
            ax.tick_params(axis='both', which='minor', labelsize=FSIZE)
            
            #set 20-Angstrom tickmarks
            loc = plticker.MultipleLocator(base=20.0)
            ax.xaxis.set_major_locator(loc)
            if(running == NSPEC-1):
                ax.set_xlabel("Wavelength ($\mathrm{\AA}$)",labelpad=10,fontsize=FSIZE)
                ax.set_ylabel("Intensity",labelpad=20,fontsize=FSIZE)
            #select the colour of the line depending on which spectrum we are plotting
            colour = None

            if(subset.loc[0,'band_name'] == "B"):
                colour = "#085dea"
            if(subset.loc[0,'band_name'] == "V"):
                colour = "#1e8c09"
            if(subset.loc[0,'band_name'] == "R"):
                colour = "#cf0000"
            if(subset.loc[0,'band_name'] == "I"):
                colour = "#640418"

            #plot the spectrum
            ax.plot(spec.wavelength,spec.flux,linewidth=LWIDTH,color=colour)

            #now work out the best y-axis range to plot
            #use sigma clipping to determine the limits, but exclude 1 per cent of the wavelength range
            #at each end of the spectrum (often affected by noise or other systematic effects)
            nspec = len(spec.spectral_axis)
            clipped = sigma_clip(spec[int(0+0.01*nspec):int(nspec-0.01*nspec)].flux,masked=False,sigma=15)
            ymin = min(clipped).value
            ymax = max(clipped).value 
            xmin = spec.wavelength[0].value
            xmax = spec.wavelength[nspec-1].value
            #add a 1% buffer either side of the x-range
            dx=0.01*(xmax-xmin)
            ax.set_xlim(xmin-dx,xmax+dx)
            #add a 1% buffer either side of the y-range
            dy=0.03*(ymax-ymin)
            ax.set_ylim(ymin-dy,ymax+dy)
            #get some basic information for a title
            #from the SSA obscore information
            #more information can be obtaining querying the galah_dr3 
            #table directly using the DataCentral API (see other SSA example)  
            target = "%s" % subset.loc[0,'target_name']
            tmid = Time(subset.loc[0,'t_midpoint'],format='mjd')
            tmid.format='isot'
            #Add the title if the first plotted spectrum 
            if(running == 0):
                rc = coord.Angle(subset.loc[0,'s_ra'],unit=u.degree)
                dc = coord.Angle(subset.loc[0,'s_dec'],unit=u.degree)
                coords = "$\mathrm{\\alpha=}$%s $\mathrm{\\delta=}$%s" % (rc.to_string(unit=u.hour,sep=':')[:-2],dc.to_string(unit=u.deg,sep=':')[:-2])
                coords = re.sub("-","$-$",coords)
                titre = "%s %s %s EXP=%s s" % (target,coords,tmid.value[:-4],int(exptime))
                #not all spectra have the RV defined in the SSA obscore output 
                if(subset.loc[0,'rv'] != ""):
                    rvstr = " RV=%.2f" % subset.loc[0,'rv']
                    titre = titre + re.sub("-","$-$",rvstr) + " km s$^{-1}$"
                ax.set_title(titre,fontsize=FSIZE)
                
            running = running + 1
    pdf.savefig()
    #plt.show()
    plt.close()

pdf.close()
Feb. 10, 2021 by B. Miszalski
Feb. 17, 2021, 12:40 a.m. B. Miszalski