

>>EBF<<
An efficient and easy to use binary file

format

Sanjib Sharma
Sydney Institute for Astronomy

University Of Sydney

www.ebfformat.sourceforge.net
pip install ebfpy (python2.7)
https://github.com/sanjibs/ebfpy (python2+python3)

Python, C, C++, Fortran, Java, Matlab, IDL

(coming soon in node.js)

https://github.com/sanjibs/ebfpy

Motivation

● Why do we need a format?
● Otherwise only the program that wrote the data can

read it. Or custom reading routine for each data
● Difficult to share data with others.

● Should be binary and not ascii?
● 100 times slower
● Write 700 (6) MB/s, Read 1800 (18) MB/s

Problems with binary data.

● Data type information needs to be specified
– 010111001110
– Binary data without specified data type is just 0 and 1.

● Not portable due to Endianness (little vs big)
– In a multi byte word the most significant byte is to the left (big)

or right (little). Intel vs IBM processors.
– 0x 12345678

BE: 12 34 56 78

LE: 78 56 34 12

“/pselect”

“/glon”

“/glat”

“/table/ra”

“/table/dec”

“/table/age”

“/table/feh”

int64 glon[100];
int64 glat[100];
int64 pselect[100,100];
N=1000;
float64 ra[N], dec[N], feh[N], age[N];

Code
File (“check”)

ra=read(“check”,”/table/ra”)

● Should write multiple items in same file and
have support for random read access.

– Helps to organize data in one place
– If not random access then the exact sequence in which the data

was written need to be known.
– New features cannot be easily introduced.

Why not use HDF5 or FITS?

● FITS
● does not support multiple items tagged by names.
● Sequential access too slow for large number of items

● HDF5
● a complicated format. (460 functions)
● API not user friendly. Steep learning curve.
● Main API only C. In other languages one has to rely on foreign

language interface to call the C routines.
● Not fully type safe. Errors not detected at compile time
● (…,...,...,...,HDF5_NATIVE_INT,x)

● Writing lot of small items requires too much memory.
● Per item: 4KB for FITS and 2KB for HDF

EBF design goals

● Binary format for speed
● Multiple items with random access
● Automatic type and endian conversion.
● Support for attributes and data units.

● Ease of use
● Design APIs such that it is harder to make mistakes, and when

you do it will give a compilation error.
● Support for multiple programming languages.

● No use of foreign language interface.
● Pure code in all languages.

The Format

Header-1

Data-2

Header-1

Header-2

…..

Data-1

…..

Header-N

Data-N

Header

char Signature[8]

char version[4]

int32 endian_test
=1684234849 (abcd)

int32 header_size

int32 name_size

int32 data_type

int32 data_size

int32 rank

int32 unit_size

int32 sdef_size

int64 dim[rank]

char name[name_size]

char unit[unit_size]

char sdef[sdef_size]

char extra[64]

44 bytes
Block-1

Block-2

Block-N

Defining structures

Field name:
“sdef”

Field:
“struct
{

float32 density;
float64 mass;
int32 metals 3 2;
struct {
float32 pos 3;
float32 vel 3;
}point 1;

}”

Nested (recursive structures allowed)

●Only idl and python
●Byte alignment issues make it less
portable for static languages like C/C++
●Preferably split and write each field as
separate arrays.

Supported Data types

Data Type Integer Code

undefined 0

char 1

int32 (int) 2

int64 (long) 3

float32 (float) 4

float64 (double) 5

int16 (short) 6

structure 8

int8 (unsigned char) 9

uint8 (signed char) 10

uint16 (unsigned short) 11

uint32 (unsigned int) 12

uint64 (unsigned long) 13

Note in Java no unsigned int, ebf routines do auto conversion.

API for Dynamic languages:
Python,IDL,Matlab

● import ebf

● x=np.arange(10)

● ebf.write(“check.ebf”,”/x”,x,”w”)

● x=ebf.read(“check.ebf”,”/x”)

● d={'x1':x,'x2':x}

● ebf.write(“check.ebf”,”/mydata/”,d,”a”) # ”/mydata/x1”,
”/mydata/x2”

● data=ebf.read(“check.ebf”,”/mydata/”)

– Only objects in current path
– data[“x1”], data[“x2”]

● data=ebf.read(“check.ebf”,”/mydata1/”,recon=1)

– All objects recursively in current path
– data[“x1”]
– data[“x1_attributes”][“mass”]

Python: iterate in chunks over big data

● import ebf

● x=np.arange(10000000)

● d={'x1':x,'x2':x,'x3':x}

● ebf.write(“check.ebf”,”/”,d,”a”)

● temp=0

● for x3 in ebf.iterate(“check.ebf”,”/x3”,1000):

● temp=temp+np.sum(x3)

● print(temp)

● temp=0

● for data in ebf.iterate(“check.ebf”,“/x1+”,1000):

● temp=temp+np.sum(data['x2'])+np.sum(data['x3'])

● print(temp)

API C++

● double x[100];

● ebf::Write(“check.ebf”,”/x1”,&x[0],”w”,”100 km/s”,100);

– Auto type inference

● ebf::WriteAs<int>(“check.ebf”,”/x2”,&x[0],”a”,”100,km/s”,10,10);

– Auto type conversion

● vector<float> y;

● ebf::Read(“check.ebf”,”/x”,y);

– Auto resize and type conversion

API C

● double x[100];

● Ebf_WriteFloat64(“check.ebf”,”/x1”,&x[0],”w”,”100 km/s”,100);

– Type Safe , will give compilation error for wrong types

● Float *y;

● EbfDataInfo dinfo=Ebf_GetDataInfo(“check.ebf”,”/x1”);

● y=(float *)malloc(dinfo.elements*8)

● Ebf_ReadFloat32(“check.ebf”,”/x”,&y[0],dinfo.elements);

– Auto type conversion and Type Safe.

API C++/C/Java/Fortran

● Efile efile;

● efile.Open(“check.ebf”,”/x”,”w”,Ebf_type(“int32”),”km/s”);

● efile.Write(&x1[0]); // float

● efile.Write(&x2[1],10); // double

● Efile.Close();

●

● efile.Open(“check.ebf”,”/x”);

● Efile.Seek(20) // move to 20th elements

● efile.Read(&y1[0]); // float

● efile.Read(&y2[1],10); // double

● Efile.Close();

Iterating without loading the full data
 (C++ only)

● ebf::EbfVector<float> x(“check.ebf”,”/x”);

● x[i];

● x(i,j); // multidimensional index

● x(i,j,k); // multidimensional index

● Only 1000 items loaded at a time, full data never loaded.

● Useful for traversing Big Data sets with a small amount of RAM.

Ebf Internals

Header-1

Data-2

Header-1

Header-2

…..

Data-1

…..

Header-N

Data-N

● Sequential access is O(N)
● Hash map O(1)

● hashmap[dataname]=location

● e.g., large number of data objects
● 100x100 grid (in age and metallicity) of

isochrone tables
● “feh0.1_age2.0”, “feh0.1_age2.0”

Hashmap “/.ebf/htable”

p1

p2

pN

key value null

key value next key value null

“/mydata/x”

HASH

Where to put the hashtable?

● Putting in beginning: not a good idea.
● Have to choose some size, which better be small.
● Cannot change the size if it is full.

● Solution: adaptive
● Put in the beginning location of hastable './ebf/info' (int64 x[5])
● Put hashtable of fixed size after that './ebf/htable'
● If (the hashtable is full)

– Rename the old table
– Add a new table at the end, of double the previous size.
– Update './ebf/info' to reflect the new location

Reserved paths

● /.ebf/info
● /.ebf/htable
● /.tr/

 Remove or restore items, '/.tr/'

● ebf.rename('check.ebf','/x','')

'/x' → '/.tr/x.0'
● Write and remove again

'/x' → '/.tr/x.1'

The ebf toolkit ebftk

The ebf toolkit ebftk

The ebf toolkit ebftk
$ebftk –help

NAME:
 ebftk - a toolkit for EBF files (version 0.0.20)

USAGE:
 ebftk -diff file1 file2
 ebftk -list filename
 ebftk -stat filename "TagName1 TagName2 .."
 ebftk -copy src_file dest_file
 ebftk -copy src_file dest_file TagName
 ebftk -cat filename "TagName1 TagName2 .."
 ebftk -csv filename "TagName1 TagName2 .."

Attributes and data units

● Unlike HDF or FITS, no special interface for attributes,
just write like other data items.
● “/data”,
● “/data_attributes/attr1”, “/data_attributes/attr2”

● Units are not attributes they are part of definition of data.
● Attributes can also have units
● “/density” (100,100), kg/m^2
● “/density_attributes/x” (100,), m
● “/density_attributes/y” (100,), m

Performance
(1000 data items of size 4 bytes, array of 107 float)

Language Item write Item read Data write Data read

KOP/s KOP/s MB/s MB/s

C/C++ EBF 9 23 775 1800

C/C++ HDF5 1.5 1.5 775 1800

C/C++ FITS 0.2 0.5 344 502

C/C++ ASCII 5.6 18

Fortran90/2003 6.0 8.3 950 1120

Java 2.3 7.4 270 727

Python EBF 1.72 1.07 466 620

Python HDF5 0.95 1.0 659 1030

Python FITS 0.74 0.0012 427 1047

IDL EBF 2.7 2.6 113 772

IDL HDF5 5.0 7.4 110 94

IDL FITS 2.7 0.007 80 360

Matlab EBF 0.26 0.26 680 1175

Matlab HDF5 0.26 0.86 1000 1030

Matlab FITS 0.0004 78

● Easier to use and at the same time performance at par with
HDF.
● Type safe, auto data type conversion

● More finer control of reading and writing.
● Skip, tree walks.

● Available at
● www.ebfformat.sourceforge.net
● https://github.com/sanjibs/ebfpy (python2 + python3)

– pip install ebfpy (for python 2.7)
● sanjib.sharma@gmail.com

Summary

https://github.com/sanjibs/ebfpy

● Size of items cannot be expaned. Could be
supported in future.

● No support for hyperslab selection
● HDF5 can do both of above, as it uses B-trees

● Easier to use and at the same time
performance at par with HDF.

● Available at
● https://github.com/sanjibs/ebfpy
● sanjib.sharma@gmail.com

Conclusions

>>EBF<<
An efficient and easy to use binary file

format
● Why do we need a format?
● Why binary and not ascii?

● Write 700 (6) MB/s, Read 1800 (18) MB/s
● Why do we need to write multiple items?
● What are the problems with binary data?
● Why not HDF or FITS?
● Ebf Design goals
● Ebf Internals: blocks

● Header, Structures, Supported Datatypes
● EBF API C,C++,Java,Fortran (statically typed languages)

● EbfVector
● EBF API Python,IDL,Matlab (dynamically typed languages)

● iterator
● Ebf Internals:

● Hashtable, reserved paths,checksum
● Ebf tool kit
● Attributes and units
● Performance
● Conclusions

Checksum

● What if file is modified external to the program?
● e.g. running interactive session in IDL, while data being generated

externally
● Time

● Time is not reliable
● Time is not accurate (resolution)
● Diff wont work

● Checksum
● A unique 64 bit number created out of

– (dataname, location)
● Added as the first item “/.ebf/info”
● Updated each time a new item is written

/.ebf/info

● Int64 x[5]
● x[0]- checksum

● Hash created out of string
● s='(key_0, location_0)...(key_N, location_N')

● x[1]- location of item hash-table
● x[2]- location of hash-table skipping header
● x[3]- 1, unused
● x[4]- unused

/.ebf/htable

● Hash Table
● struct ht_header;
● int64 ht_table[htcapacity];
● struct items[itemcapacity]

– struct{int64 keyloc; int64 keysize; int64 value; int64 next;
int64 tnext; }

● char keys[keycapacity];
– key_i = keys[items['keyloc'][i]: items['keyloc'][i]

+items['keysize'][i]]

Ebf Internals

Header-1

Data-2

Header-1

Header-2

…..

Data-1

…..

Header-N

Data-N

EbfHeader
read
write

EbfMap a hash map
getLocation(filename,dataname)

Efile
open
read
write
close

● Sequential access is O(N2)
● Hash map O(1)

● hashmap[dataname]=location
● e.g., large number of data objects,

100x100 grid (in age and metallicity)
of isochrone tables

Motivation
● Why do we need a format?

● Otherwise only the program that wrote the data can read it. Or custom reading
routine for each data

● Difficult to share data with others.

● Should be binary and not ascii?
● 100 times slower
● Write 700 (6) MB/s, Read 1800 (18) MB/s

● Should write multiple items in same file and have random access
support.
● Helps to organize data in one place
● If not random access then the exact sequence in which the data was written

need to be known.
– New features cannot be easily introduced.

● 100x100 grid (in age and metallicity) of isochrone tables

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

