
A joint web archive for the SAAO and SALT

Lucian Botha
Christian Hettlage

South African Astronomical Observatory
Southern African Large Telescope

A data archive for the SAAO and SALT

The South African Astronomical Observatory (SAAO) operates
various telescopes in Sutherland (South Africa), including the
Southern African Large Telescope, one of the biggest optical
telescopes in the world.

Currently the data taken at Sutherland is not made available to
the public, and access for data owners is not ideal either: 
Clearly there is a need for a data archive.

Resources are limited, and for that reason the first phase of the
archive is limited to providing a website for searching and
retrieving data.

SAAO/SALT hardware and data

Virtualization - Proxmox VE with a mix of KVM and LXC
containers across both sites.

EqualLogic Dell Storage - Running on both sites with 20Gbps
storage throughput.

Overall data storage ~ 300TB

Current Science Data Storage - 40 TB SALT data
 - 12 TB SAAO data

Data flow and pipelines

Data collected on the plateau could potentially reach 1 TB per night.

Not all data is stored on our NAS. Hosted facilities copies data back
to home institutes.

SALT data is grabbed from all instruments during a night’s
observation.

Data is sync’ed to Cape Town via bash scripts and cron jobs.

Pipelines run in the morning to reduce data and users are notified of
the data product.

General data archive workflow

General data archive workflow

Users can either register, or login with their SALT accounts
(others to follow).

They can search public data and data owned by them.

Proprietary observations aren’t included in search results,
unless the user owns them.

Data files can be added to a cart and requested in bulk.
Alternatively, individual files can be viewed and saved in JS9.

System architecture

Database server:
MySQL 8
(observation and admin database; the former is populated from
FITS headers by a Python script)

Backend:
 nginx as proxy server
 pm2 for running the server

GraphQL-Yoga server (on top of Express)

Frontend:
nginx server serving static files (which use React and Apollo)

API considerations

Observation queries
SQL where condition described as a JSON object
Requested columns as an array of strings
MySQL statement generated from the where condition, the requested
tables and the database model

GraphQL
Not strictly necessary
Input validation „for free“
Documentation much simpler than for RESTful API, thanks to tools like
GraphQL-Playground
No more worrying about POST vs PATCH vs PUT…

Classic HTTP endpoints for authentication and file downloads

Software used

TypeScript
graphql-yoga
PassportJS (with local strategy, cookie-based session)
React
Apollo
react-virtualized
JS9
Bulma, Font Awesome, styled components
target-position (own npm package for accessing Simbad etc.)
General tools: Reviewable, TS Lint, Prettier, Husky, Travis, Jest

What hasn’t worked that well?

Using Prisma instead of „just“ MySQL was not effective.

Apollo is a great tool (and we’ll keep it), but its automated
caching comes with a caveat or two.

Travis (to some extent).

Daily meetings were a great help. But there should have been
a stakeholder on these meetings…

Future developments

Cloud Computing and Storage - Commercial or Research

Data Retentions and Data Management policies

Archive future - get all instruments and telescopes on board

To become interoperable and allow users to use VO tools and
applications on the archive data

